Stochastic Newton methods with enhanced Hessian estimation

Danda Sai Koti Reddy

M.Sc(engg) thesis defence

Research Advisor : Prof. Shalabh Bhatnagar

Stochastic Systems Lab, Department of Computer Science and Automation, Indian Institute of Science, Bangalore

Overview

Simulation Optimization

Random Directions Stochastic Approximation (RDSA) + Improved Hessian Estimation

Improved Hessian Estimation for Simultaneous Perturbation Stochastic Approximation with 3 Simulations (SPSA-3)

Numerical Results

Simulation Optimization

Optimization under Uncertainity

Energy Demand Management

- Consumer demand, energy generation are uncertain
- Objective is to minimize absolute difference

Optimization under Uncertainity

Energy Demand Management

- Consumer demand, energy generation are uncertain
- Objective is to minimize absolute difference

Traffic Signal Control

- Optimal order to switch traffic lights
- Objective is to minimize waiting time

Basic optimization problem

To find θ^* that minimizes the objective function $f(\theta)$:

$$\theta^* = \operatorname*{arg\,min}_{\theta \in \Theta} f(\theta) \tag{1}$$

- $f: \mathbb{R}^N \to \mathbb{R}$ is called the objective function
- θ is tunable N-dimensional parameter
- $\Theta \subseteq \mathbb{R}^{N}$ is the feasible region in which θ takes values

Classification of optimization problems

Deterministic optimization problem

- Complete information about objective function f
- First and higher order derivatives
- Feasible region

Classification of optimization problems

Deterministic optimization problem

- Complete information about objective function f
- First and higher order derivatives
- Feasible region

Stochastic optimization problem

- We have little knowledge on the structure of f
- f cannot be obtained directly
- $f(\theta) \equiv E_{\xi}[h(\theta, \xi)]$, where ξ comprises the randomness in the system

Difficult to find θ^* only on the basis of noisy samples

Stochastic optimization via simulation

Stochastic optimization deals with highly nonlinear and high dimensional systems. The challenges with these problems are:

- Too complex to solve analytically
- $\bullet\,$ Many simplifying assumptions are required

Stochastic optimization via simulation

Stochastic optimization deals with highly nonlinear and high dimensional systems. The challenges with these problems are:

- Too complex to solve analytically
- Many simplifying assumptions are required

A good alternative of modelling and analysis is "Simulation"

Figure 1: Simulation optimization

Stochastic approximation + Gradient descent

Stochastic analog of gradient descent

$$\theta_{n+1} = \Gamma_{\Theta} \left[\theta_n - a_n \widehat{\nabla} f(\theta_n) \right]$$
 (2)

- $\widehat{\nabla} f(\theta_n)$ is a noisy estimate of the gradient $\nabla f(\theta_n)$, and it should satisfy $\mathbb{E}\left[\widehat{\nabla} f(\theta_n)\right] \nabla f(\theta_n) \to 0$
- $\{a_n\}$ are pre-determined step-sizes satisfying:

$$\sum_{n=1}^{\infty}a_n=\infty,\quad \sum_{n=1}^{\infty}a_n^2<\infty$$

• Γ_{Θ} denotes the projection of a point onto Θ

7

2-slide summary

Related second-order methods

(Spall 2000) ¹	Second-order SPSA (2SPSA)	4 simulations/iteration
$(Spall 2009)^2$	2SPSA + feedback	4 simulations/iteration
(Prashanth L.A. et al 2016) ³	Second-order RDSA (2RDSA)	3 simulations/iteration
(S. Bhatnagar et al 2015) ⁴	Second-order SPSA-3 (2SPSA-3)	3 simulations/iteration

 $^{^{1}\}mathrm{J.}$ C. Spall (2000), "Adaptive stochastic approximation by the simultaneous perturbation method," IEEE TAC.

 $^{^2}$ J. C. Spall (2009), "Feedback and weighting mechanisms for improving Jacobian estimates in the adaptive simultaneous perturbation algorithm," IEEE TAC.

⁹Prashanth L. A, Shalabh Bhatnagar, Michael Fu, Steve Marcus (2016), "Adaptive system optimization using random directions stochastic approximation," IEEE TAC.

⁴S. Bhatnagar, Prashanth L. A (2015) , "Simultaneous perturbation Newton algorithms for simulation optimization," JOTA.

2-slide summary

Our work

- We propose generalised RDSA algorithm¹ + feedback and weighting mechanisms for improving Hessian estimate²
- \bullet We propose feedback and weighting mechanisms for improving Hessian estimate of 2SPSA-3 algorithm 1

Under preparation - "https://github.com/dsai1215/asgoodasitgets/tree/master/Journal".

 $^{^2\}mathrm{D}.$ Sai Koti Reddy, Prashanth L.A, Shalabh Bhatnagar (2016), "Improved Hessian estimation for adaptive random directions stochastic approximation," IEEE CDC 2016.

Random Directions Stochastic Approximation (RDSA) + Improved Hessian Estimation

Our algorithm

- Matrix projection \(
- Gradient estimate -

Our algorithm

- Matrix projection \(
- Gradient estimate

$$\theta_{n+1} = \theta_n - a_n \Upsilon(\overline{H}_n)^{-1} \widehat{\nabla} f(\theta_n)$$
(3)

$$\overline{H}_{n} = (1 - b_{n})\overline{H}_{n-1} + b_{n}(\widehat{H}_{n} - \widehat{\Psi}_{n})$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad (4)$$

- Optimal step-sizes
- Hessian estimate
- Feedback term -

Overall flow of 2RDSA-IH

RDSA gradient estimate

Function measurements

$$y_n^+ = f(\begin{array}{c} \theta_n + \delta_n d_n \end{array}) + \xi_n^+, \quad y_n^- = f(\begin{array}{c} \theta_n - \delta_n d_n \end{array}) + \xi_n^-$$

RDSA gradient estimate

Function measurements

$$y_n^+ = f(\begin{array}{c} \theta_n + \delta_n d_n \end{array}) + \xi_n^+, \quad y_n^- = f(\begin{array}{c} \theta_n - \delta_n d_n \end{array}) + \xi_n^-$$

Gradient estimate

$$\widehat{\nabla}f(\theta_n) = \frac{1}{\lambda} d_n \left[\frac{y_n^+ - y_n^-}{2\delta_n} \right]$$
 (5)

Where $d_n = (d_n^1, \dots, d_n^N)^T$, and $\lambda = \mathbb{E}(d_n^i)^2$

2RDSA Hessian estimate

Function measurements

$$y_n^+ = f(\begin{array}{c} \theta_n + \delta_n d_n \end{array}) + \xi_n^+, \ \ y_n^- = f(\begin{array}{c} \theta_n - \delta_n d_n \end{array}) + \xi_n^-, \ \ y_n = f(\begin{array}{c} \theta_n \end{array}) + \xi_n$$

2RDSA Hessian estimate

Function measurements

$$y_n^+ = f(\frac{\theta_n + \delta_n d_n}{\theta_n}) + \xi_n^+, \ y_n^- = f(\frac{\theta_n - \delta_n d_n}{\theta_n}) + \xi_n^-, \ y_n = f(\frac{\theta_n}{\theta_n}) + \xi_n$$

Hessian estimate \widehat{H}_n

$$\begin{split} \widehat{H}_{n} &= M_{n} \left(\frac{y_{n}^{+} + y_{n}^{-} - 2y_{n}}{\delta_{n}^{2}} \right) \\ &= M_{n} \left[\left(\frac{f(\theta_{n} + \delta_{n} d_{n}) + f(\theta_{n} - \delta_{n} d_{n}) - 2f(\theta_{n})}{\delta_{n}^{2}} \right) \\ &+ \left(\frac{\xi_{n}^{+} + \xi_{n}^{-} - 2\xi_{n}}{\delta_{n}^{2}} \right) \right] \\ &= M_{n} \left(\frac{d_{n}^{T} \nabla^{2} f(\theta_{n}) d_{n}}{\delta_{n}^{2}} + O(\delta_{n}^{2}) + \frac{\left(\frac{\xi_{n}^{+} + \xi_{n}^{-} - 2\xi_{n}}{\delta_{n}^{2}} \right)}{\delta_{n}^{2}} \right) \end{split}$$
Want to recover
$$\nabla^{2} f(\theta_{n}) \text{ from this}$$
Zero-mean

How to choose M_n?

$$M_{n} = \begin{bmatrix} \frac{1}{\kappa} \left((d_{n}^{1})^{2} - \lambda \right) & \cdots & \frac{1}{2\lambda^{2}} d_{n}^{1} d_{n}^{N} \\ \frac{1}{2\lambda^{2}} d_{n}^{2} d_{n}^{1} & \cdots & \frac{1}{2\lambda^{2}} d_{n}^{2} d_{n}^{N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2\lambda^{2}} d_{n}^{N} d_{n}^{1} & \cdots & \frac{1}{\kappa} \left((d_{n}^{N})^{2} - \lambda \right) \end{bmatrix}$$

$$(7)$$

where
$$\lambda = \mathbb{E}(d_n^i)^2$$
, $\tau = E(d_n^i)^4$, and $\kappa = (\tau - \lambda^2)$ for any $i = 1, \dots, N$

Zero-mean term-

Mean of the Hessian estimate

$$\mathbb{E}\left[\widehat{H}_{n}\middle|\mathcal{F}_{n}\right] = \nabla^{2}f(\theta_{n}) + \mathbb{E}\left[\left.\Psi_{n}\left(\nabla^{2}f(\theta_{n})\right)\middle|\mathcal{F}_{n}\right]\right] + O(\delta_{n}^{2}) + \mathbb{E}\left[\left.\left(\frac{\xi_{n}^{+} + \xi_{n}^{-} - 2\xi_{n}}{\delta_{n}^{2}}\right)\middle|\mathcal{F}_{n}\right]\right]$$
Zero-mean (8)

¹For any matrix P, $[P]_D$ refers to a matrix that retains only the diagonal entries of P and replaces all the remaining entries with zero

 $^{^{2}}$ [P]_N to refer to a matrix that retains only the off-diagonal entries of P, while replaces all the diagonal entries with zero

Zero-mean term-

Mean of the Hessian estimate

$$\mathbb{E}\left[\widehat{H}_{n}\middle|\mathcal{F}_{n}\right] = \nabla^{2}f(\theta_{n}) + \frac{\mathbb{E}\left[\Psi_{n}(\nabla^{2}f(\theta_{n}))\middle|\mathcal{F}_{n}\right]}{\mathbb{E}\left[\left(\frac{\xi_{n}^{+} + \xi_{n}^{-} - 2\xi_{n}}{\delta_{n}^{2}}\right)\middle|\mathcal{F}_{n}\right]} + O(\delta_{n}^{2})$$

$$+ \mathbb{E}\left[\left(\frac{\xi_{n}^{+} + \xi_{n}^{-} - 2\xi_{n}}{\delta_{n}^{2}}\right)\middle|\mathcal{F}_{n}\right]$$
Zero-mean (8)

Feedback term

$$\Psi_{n}(H) = [M_{n}]_{D} \left(d_{n}^{T} [H]_{N} d_{n} \right) + [M_{n}]_{N} \left(d_{n}^{T} [H]_{D} d_{n} \right)$$
(9)

 $^{^{1}}$ For any matrix P, [P]_D refers to a matrix that retains only the diagonal entries of P and replaces all the remaining entries with zero

 $^{^{2}}$ [P]N to refer to a matrix that retains only the off-diagonal entries of P, while replaces all the diagonal entries with zero

Problem

Feedback term is function of current Hessian $\nabla^2 f$

Problem

Feedback term is function of current Hessian $\nabla^2 f$

Solution

Use \overline{H}_{n-1} as a proxy for $\nabla^2 f$

$$\widehat{\Psi}_{n} = \Psi_{n} (\overline{\overline{H}}_{n-1}) \tag{10}$$

Recall the Hessian recursion,
$$\overline{H}_n = (1-b_n)\overline{H}_{n-1} + b_n(\widehat{H}_n - \widehat{\Psi}_n)$$

Recall the Hessian recursion, $\overline{H}_n = (1 - b_n)\overline{H}_{n-1} + b_n(\widehat{H}_n - \widehat{\Psi}_n)$

Rewriting the Hessian recursion

$$\overline{H}_{n} = \sum_{i=0}^{n} \tilde{b}_{i} (\widehat{H}_{i} - \widehat{\Psi}_{i})$$
(11)

Recall the Hessian recursion, $\overline{H}_n = (1 - b_n)\overline{H}_{n-1} + b_n(\hat{H}_n - \hat{\Psi}_n)$

Rewriting the Hessian recursion

$$\overline{H}_{n} = \sum_{i=0}^{n} \tilde{b}_{i} (\widehat{H}_{i} - \widehat{\Psi}_{i})$$
(11)

Optimization problem for weights

$$\min_{\{\tilde{b}_i\}} \sum_{i=0}^{n} (\tilde{b}_i)^2 \delta_i^{-4}, \text{ subject to}$$
 (12)

$$\tilde{\mathbf{b}}_{i} \ge 0 \,\,\forall i \,\,\text{and}\,\, \sum_{i=0}^{n} \tilde{\mathbf{b}}_{i} = 1$$
 (13)

Above optimization problem solution

$$\tilde{b}_{i}^{*} = \delta_{i}^{4} / \sum_{j=0}^{n} \delta_{j}^{4}, i = 1, \dots, n$$
 (14)

 $^{^{1}\}mathrm{Step\textsc{-}size}$ optimization is a relatively straightforward migration from Spall 2009

Above optimization problem solution

$$\tilde{b}_{i}^{*} = \delta_{i}^{4} / \sum_{j=0}^{n} \delta_{j}^{4}, i = 1, \dots, n$$
 (14)

Optimal weights for original Hessian recursion

$$b_i = \delta_i^4 / \sum_{i=0}^i \delta_j^4 \tag{15}$$

¹Step-size optimization is a relatively straightforward migration from Spall 2009

Improved Hessian Estimation for Simultaneous Perturbation Stochastic Approximation with 3 Simulations (SPSA-3)

SPSA gradient estimate¹

Function measurements

$$y_n^+ = f(\begin{array}{c} \theta_n + \delta_n \Delta_n \end{array}) + \xi_n^+, \quad y_n^- = f(\begin{array}{c} \theta_n - \delta_n \Delta_n \end{array}) + \xi_n^-$$

Gradient estimate

$$\widehat{\nabla}f(\theta_{n}) = \begin{pmatrix} \frac{f(\theta_{n} + \delta_{n}\Delta_{n}) - f(\theta_{n} - \delta_{n}\Delta_{n})}{2\delta_{n}\Delta_{n1}} + \frac{\xi_{n}^{+} - \xi_{n}^{-}}{2\delta_{n}\Delta_{n1}} \\ \vdots \\ \frac{f(\theta_{n} + \delta_{n}\Delta_{n}) - f(\theta_{n} - \delta_{n}\Delta_{n})}{2\delta_{n}\Delta_{nN}} + \frac{\xi_{n}^{+} - \xi_{n}^{-}}{2\delta_{n}\Delta_{nN}} \end{pmatrix}$$
(16)

 $^{^{1}}$ J. C. Spall (1992), "Multivariate stochastic approximation using a simultaneous perturbation gradient approximation," IEEE TAC.

Function measurements

$$\begin{split} y_n^{++} &= f(\begin{array}{c} \theta_n + \delta_n \Delta_n + \delta_n \widehat{\Delta}_n \\ y_n^{--} &= f(\begin{array}{c} \theta_n - \delta_n \Delta_n - \delta_n \widehat{\Delta}_n \\ \end{array}) + \xi_n^{++}, \qquad y_n = f(\begin{array}{c} \theta_n \\ \end{array}) + \xi_n, \end{split}$$

Hessian estimate \hat{H}_n

$$\left(\widehat{\mathbf{H}}_{\mathbf{n}}\right)_{ij} = \left(\frac{\mathbf{y}_{\mathbf{n}}^{++} + \mathbf{y}_{\mathbf{n}}^{--} - 2\mathbf{y}_{\mathbf{n}}}{2\delta_{\mathbf{n}}^{2}\Delta_{\mathbf{n}}^{(i)}\widehat{\Delta}_{\mathbf{n}}^{(j)}}\right) \tag{17}$$

 $^{^1\}mathrm{S.}$ Bhatnagar, Prashanth L. A (2015) , "Simultaneous perturbation Newton algorithms for simulation optimization," JOTA.

Simplified Hessian estimate

$$\widehat{H}_{n} = \nabla^{2} f(\theta_{n}) + \Psi_{n}(\nabla^{2} f(\theta_{n})) + O(\delta_{n}^{2}) + O(\delta_{n}^{-2})$$
(18)

Feedback term

$$\Psi_{n}(H) = \frac{1}{2} P_{n} \left[\Delta_{n}^{T} H \Delta_{n} + \widehat{\Delta}_{n}^{T} H \widehat{\Delta}_{n} \right] + \widehat{N}_{n}^{T} H N_{n} + \widehat{N}_{n}^{T} H + H N_{n}$$
 (19)

Where,

$$P_n = [1./\Delta_n][1./\Delta_n]^{\scriptscriptstyle T}, \ N_n = \Delta_n[1./\Delta_n]^{\scriptscriptstyle T} - I_N, \ \widehat{N}_n = \widehat{\Delta}_n[1./\widehat{\Delta}_n]^{\scriptscriptstyle T} - I_N$$

Convergence analysis

Lemma

(Bias in Hessian estimate) Under assumptions similar to those for 2SPSA and 2RDSA, we have a.s. $that^1$, for i, j = 1, ..., N,

$$\left| \mathbb{E} \left[\widehat{H}_{n}(i,j) \middle| \mathcal{F}_{n} \right] - \nabla_{ij}^{2} f(\theta_{n}) \right| = O(\delta_{n}^{2})$$
 (20)

Theorem

(Strong Convergence of Hessian) Under assumptions similar to those for 2SPSA and 2RDSA, we have that

$$\theta_n \to \theta^*, \overline{H}_n \to \nabla^2 f(\theta^*) \text{ a.s. as } n \to \infty$$

¹Here $\widehat{H}_n(i,j)$ and $\nabla^2_{ij}f(\cdot)$ denote the (i,j)th entry in the Hessian estimate \widehat{H}_n and the true Hessian $\nabla^2 f(\cdot)$, respectively

Convergence analysis

Recall the Hessian recursion,
$$\overline{H}_n = (1 - b_n)\overline{H}_{n-1} + b_n(\widehat{H}_n - \widehat{\Psi}_n)$$

Convergence analysis

Recall the Hessian recursion, $\overline{H}_n = (1 - b_n)\overline{H}_{n-1} + b_n(\widehat{H}_n - \widehat{\Psi}_n)$

Rewriting Hessian recursion as SA scheme

$$\overline{H}_{n} = \overline{H}_{n-1} - b_{n} (\overline{H}_{n-1} - \widehat{H}_{n} + \widehat{\Psi}_{n})$$

$$= \overline{H}_{n-1} - b_{n} (\overline{H}_{n-1} - \overline{H}^{*} + \widehat{\Psi}_{n} - \Psi_{n}(\overline{H}^{*}))$$
(21)

Convergence analysis

Recall the Hessian recursion, $\overline{H}_n = (1 - b_n)\overline{H}_{n-1} + b_n(\widehat{H}_n - \widehat{\Psi}_n)$

Rewriting Hessian recursion as SA scheme

$$\overline{H}_{n} = \overline{H}_{n-1} - b_{n} (\overline{H}_{n-1} - \widehat{H}_{n} + \widehat{\Psi}_{n})$$

$$= \overline{H}_{n-1} - b_{n} (\overline{H}_{n-1} - H^{*} + \widehat{\Psi}_{n} - \Psi_{n}(H^{*}))$$
(21)

Theorem

(2SPSA-3-IH Quadratic case - Convergence rate) Let $b_n = b_0/n^r, \text{ where } 1/2 < r < 1 \text{ and } 0 < b_0 \leq 1, \text{ H}^* = \nabla^2 f(\theta^*)$ and $\Lambda_k = \overline{H}_k - H^*$. Under noise-free setting, we have

$$\operatorname{trace}[\mathbb{E}(\Lambda_{n}^{T}\Lambda_{n})] = O(e^{-2b_{0}n^{1-r}/1-r})$$
 (22)

Numerical Results

Distribution for d_n^i , i = 1, ..., N

Asymmetric Bernoulli distribution¹

Uniform perturbations¹

$$d_n^i = \text{Unif}[-\eta, \eta], \eta > 0 \tag{23}$$

¹Prashanth L. A, Shalabh Bhatnagar, Michael Fu, Steve Marcus (2016), "Adaptive system optimization using random directions stochastic approximation," IEEE TAC.

Numerical Results

Quadratic loss

$$f(\theta) = \theta^{T} A \theta + b^{T} \theta \tag{24}$$

Fourth-order loss

$$f(\theta) = \theta^{T} A^{T} A \theta + 0.1 \sum_{j=1}^{N} (A \theta)_{j}^{3} + 0.01 \sum_{j=1}^{N} (A \theta)_{j}^{4}$$
 (25)

Additive Noise : $[\theta^T, 1]Z$, where $Z \approx \mathcal{N}(0, \sigma^2 I_{N+1 \times N+1})$

 $^{^{1}} The \ implementation \ is \ available \ at \ https://github.com/prashla/RDSA/archive/master.zip$

Numerical Results

Normalized MSE (NMSE)

$$\|\theta_{n_{end}} - \theta^*\|^2 / \|\theta_0 - \theta^*\|^2$$
 (26)

Normalized loss

$$f(\theta_{n_{end}})/f(\theta_0)$$
 (27)

Table 1: Normalized loss values for fourth-order objective (25) with noise: simulation budget = 10,000 and standard error from 500 replications shown after \pm

Noise parameter $\sigma = 0.1$			
	Regular	Improved Hessian estimation	
2SPSA	0.132 ± 0.0267	0.104 ± 0.0355	
2SPSA-3	0.0951 ± 0.0031	0.0594 ± 0.0014	
2RDSA-Unif	0.115 ± 0.0214	0.0271 ± 0.0538	
2RDSA-AsymBer	0.0471 ± 0.021	0.0099 ± 0.0014	

¹Observation 1: Schemes with improved Hessian estimation performs better than their respective regular schemes

Observation 2: 2RDSA-IH-AsymBer is performing the best overall

Table 2: NMSE values for quadratic objective (24) with noise: simulation budget = 10,000 and standard error from 500 replications shown after \pm

Noise parameter $\sigma = 0.1$			
	Regular	Improved Hessian estimation	
2SPSA	0.9491 ± 0.0131	0.5495 ± 0.0217	
2SPSA-3	0.8378 ± 0.0179	0.1045 ± 0.0005	
2RDSA-Unif	1.0073 ± 0.0140	0.1953 ± 0.0095	
2RDSA-AsymBer	0.1667 ± 0.0095	0.0324 ± 0.0007	

¹Observation 1: Schemes with improved Hessian estimation performs better than their respective regular schemes

Observation 2: 2RDSA-IH-AsymBer is performing the best overall

Conclusions

- Proposed generalised RDSA algorithm + Improved Hessian estimation scheme
- Improved Hessian estimation scheme for 2SPSA-3 algorithm
- $\bullet~$ 2RDSA-IH, 2SPSA-3 requires only 75% of the simulation cost per-iteration for 2SPSA, 2SPSA-IH

Future work

- To improve rate of convergence of first-order methods by incorporating ideas of momentum descent, Hessian-free methods, and conjugate methods
- To develop stochastic approximation versions of quasi-Newton schemes given by the Broyden family
- To explore applications of these methods to the design of reinforcement learning algorithms
- Deterministic perturbations for Second-order methods

Thank You