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Simulation Optimization



Optimization under Uncertainity

1
Energy Demand Management

e Consumer demand, energy

generation are uncertain

o Objective is to minimize
absolute difference
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o Consumer demand, energy
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Traffic Signal Control

e Optimal order to switch
traffic lights

o Objective is to minimize
waiting time




optimization pro

To find 6" that minimizes the objective function f(6) :

0* = argmin f(0) (1)
0cO

o f: RN 5 R is called the objective function
e @ is tunable N-dimensional parameter

e © C RN is the feasible region in which @ takes values



Classification of optimization problems

I
Deterministic optimization

problem

e Complete information about
objective function f

e First and higher order

derivatives

e Feasible region
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I
Deterministic optimization

problem

e Complete information about
objective function f

e First and higher order

derivatives

e Feasible region

. ___________________________________________|]
Stochastic optimization problem

o We have little knowledge on
the structure of f

e fcannot be obtained directly
o f(0) = E¢[h(6, € )], where

& comprises the randomness
in the system

Difficult to find 6™ only on the
basis of noisy samples



Stochastic optimization via simulation

Stochastic optimization deals with highly nonlinear and high
dimensional systems. The challenges with these problems are:

e Too complex to solve analytically

e Many simplifying assumptions are required



ic optimization via simulation

Stochastic optimization deals with highly nonlinear and high

dimensional systems. The challenges with these problems are:

e Too complex to solve analytically

e Many simplifying assumptions are required

A good alternative of modelling and analysis is “Simulation”

Zero mean

en

Simulator

— f(en) + gu /

Figure 1: Simulation optimization



Stochastic approximation 4+ Gradient descent

Stochastic analog of gradient descent

911+1 - r@ |:9n - an$f(0n) (2)

o Vi(8,) is a noisy estimate of the gradient V£(6,), and it should
satisfy B [@f(en)] — VE(6,) — 0

o {a,} are pre-determined step-sizes satisfying:

[e’S) oo
E an = 00, E 34121 < o0
n=1 n=1

e [o denotes the projection of a point onto ©
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Related second-order methods

Second-order SPSA

Spall 2000)" o
e ) (2SPSA)

| simulations/iteration

(Spall 2009)? ‘ 2SPSA + feedback ‘ | simulations/iteration

(Prashanth L.A. | Second-order RDSA

3 simulations/iteration

et al 2016)* (2RDSA)

(S. Bhatnagar Second-order SPSA-3 | | lations/iterati
L 3 simulations/iteration

et al 2015)* (2SPSA-3) '

1

J. C. Spall (2000), “Adaptive stochastic approximation by the simultaneous perturbation
method,” IEEE TAC.
2

J. C. Spall (2009), “Feedback and weighting mechanisms for improving Jacobian estimates in
the adaptive simultaneous perturbation algorithm,” IEEE TAC.
8

Prashanth L. A, Shalabh Bhatnagar, Michael Fu, Steve Marcus (2016), “Adaptive system
optimization using random directions stochastic approximation,” IEEE TAC.

S. Bhatnagar, Prashanth L. A (2015) ,“Simultaneous perturbation Newton algorithms for
simulation optimization,” JOTA.
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Our work
o We propose generalised RDSA algorithm! + feedback and

weighting mechanisms for improving Hessian estimate?

e We propose feedback and weighting mechanisms for improving
Hessian estimate of 2SPSA-3 algorithm®

1
Under preparation - “https://github.com/dsail215/asgoodasitgets/tree/master/Journal”.

2
D. Sai Koti Reddy, Prashanth L.A, Shalabh Bhatnagar (2016), “Improved Hessian estimation
for adaptive random directions stochastic approximation,” IEEE CDC 2016.



Random Directions Stochastic
Approximation (RDSA) + Improved

Hessian Estimation



Our algorithm

o Matrix projection

o (radient estimate

~

0n+1 - 011 — ap T (ﬁn)71 Vf(en) (3)

10



Our algorithm

o Matrix projection

o (radient estimate

~

0n+1 - 011 — ap T (ﬁn)71 Vf(en) (3)

ﬁn = (1 - bn )ﬁnfl + bn ( I/:In _.) (4)

e Optimal step-sizes —J

o Hessian estimate

¢ Feedback term
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Overall flow of 2RDSA-TH

Gradient estimation

Estimate V(6,)

Hessian Estimation

o Using parameters Estimate V(6
" " 61,0, % 8ud, >| Bistimate V71(6:)

A\ 4

Update 68, —— » 6,41

Simulation

Gradient descent

Feedback
v,

Improved Hessian estimate

11



RDSA gradient estimate

Function measurements

vi =f(0a+0ndn ) + &, yp =f(0n—6ndn ) +&;

12



RDSA gradient estimate

Function measurements

vi =f(0a+0ndn ) + &, yp =f(0n—6ndn ) +&;

Gradient estimate

s 1o Iyi—va

Where d,, = (d1

ny

L, dN)T and A = E(di)?

12



2RDSA Hessian estimate

Function measurements

ye = f(INEE) + &, v, = {({fn—dada|) + £, yo = f([8HN) + &0

13



2RDSA Hessian estimate

Function measurements
yi :f( 9n+6ndn )+§:7 yr: :f( en_éndn )+§;7 YH :f( 911 )+€n
Hessian estimate ﬁ,,
+ —
7 / Yn + Yn — 2yrl
Hn = 1\/-[11 <62>

f(911 + 5ndn) + f(en - 5ndn) - 2f(0n)
- 1\111 52

I+£; _2511
()]

L ( dTV3(0,)dy + O(62) + (QL—'—%+2€“> ) (6)

Want to recover J
V2£(#,) from this Zero-mean 3



How to choose 1\111?

1 1\2 1 13N
K ((1dn) )‘) 21\2 dndn
—_d24! —d2ay
NIH — 2)\2 n-n 2A2 n-n (7)
1 1
—dNd! = ((dN)? = A
2A2 n -n K (( n) )

where A = E(d})? , 7 = E(d})*, and = (7 — A?) for any
i=1,...,N
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Zero-mean feedback term

Zero-mean term:

Mean of the Hessian estimate

E {ﬁn

fn} —V2£(0,) + B [Un(V2H(00))| Fa] + O(52)

=1 ©

n

Zero-mean —/A

For any matrix P, [P]p refers to a matrix that retains only the diagonal entries of P and
replaces all the remaining entries with zero

2
[P]n to refer to a matrix that retains only the off-diagonal entries of P, while replaces all the
diagonal entries with zero
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Zero-mean feedback term

Zero-mean term

Mean of the Hessian estimate

E {ﬁn

fn} —V2£(0,) + B [Un(V2H(00))| Fa] + O(52)

= g

Zero-mean —J

Feedback term

Wn(H) = [NIH]D (dg [H]N dn) + [Mn]N (dg [H]D dn) (9)

For any matrix P, [P]p refers to a matrix that retains only the diagonal entries of P and
replaces all the remaining entries with zero

2
[P]n to refer to a matrix that retains only the off-diagonal entries of P, while replaces all the
diagonal entries with zero

15



Zero-mean feedback term

Problem

Feedback term is function of current Hessian V2f
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Zero-mean feedback term

Problem

Feedback term is function of current Hessian V2f

Solution

Use H,_; as a proxy for V2f

v, = v, () (10)

16



Step-size optimization

Recall the Hessian recursion, H,, = (1 — b,)H,_1 + bn(ﬁn — \TJIl)

17



Step-size optimization

Recall the Hessian recursion, H,, = (1 — b,)H,_1 + bn(ﬁn — \/I\Jn)

Rewriting the Hessian recursion

H_Zb (H; — ;) (11)
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Step-size optimization

Recall the Hessian recursion, H,, = (1 — b,)H,_1 + bn(ﬁn — \/I\Jn)

Rewriting the Hessian recursion

H_Zb (H; — ;) (11)

Optimization problem for weights
min Y (b;)26;%, subject to (12)
{bi} i=0
bi>0Viand Y bi=1 (13)
i=0

17



Step-size optimization

Above optimization problem solution

br=4t/> &ti=1,...,n (14)
j=0

!Step-size optimization is a relatively straightforward migration from Spall
2009

18



Step-size optimization

Above optimization problem solution
n
% 4 4 -
bi:§i/g §,i=1,...,n (14)
j=0
Optimal weights for original Hessian recursion

by =6/ ot (15)
j=0

!Step-size optimization is a relatively straightforward migration from Spall
2009

18



Improved Hessian Estimation for
Simultaneous Perturbation Stochastic

Approximation with 3 Simulations

(SPSA-3)




SPSA gradient estimate’

Function measurements

ye = f([ORSORA) + &, yn =f( 00 —0nln )+ £,
Gradient estimate

f(9n + 6nAn) - f(011 - 5nAn) + ;1L B IT

260 A 260 A

Vi(6,) = : (16)
f(en + 5nAn) B f(en - 6nAn) + 1? — 5;
200 AN 200 AN

1
J. C. Spall (1992), “Multivariate stochastic approximation using a simultaneous perturbation

gradient approximation,” IEEE TAC.
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SPSA-3 Hessian estimate’

Function measurements

o~

;YK-F:f( 9n+5nAn+6nAn)+§rt+v YH:f( 9n)+€na
Vo~ = f( Oy — 0Dy — 60Dy ) + £

Hessian estimate H,

(ﬁn) _ (YA t+Ya —2m
1

252 AWA G (17)

S. Bhatnagar, Prashanth L. A (2015) ,“Simultaneous perturbation Newton algorithms for
simulation optimization,” JOTA.
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Zero-mean feedback term

Simplified Hessian estimate
Hy =V2H(6,) + Wa(V?H(6)) +O(52) + 0(5;°) (18)
Feedback term
v, (H) = %Pn [AgHAn + EQHBH} +NTHN, + NTH+ HN,  (19)

Where,
P, = [1./A[1./A0]F, Ny = Ay[l./A" —1Ix, Ny = Au[l./A]" — 1y

21



Convergence analysis

Lemma

(Bias in Hessian estimate) Under assumptions similar to those for
2SPSA and 2RDSA, we have a.s. that!, for i,j=1,...,N,

& [R.6.5)| 7] - v380)| = 0(62) 0)

Theorem

(Strong Convergence of Hessian) Under assumptions similar to those

for 2SPSA and 2RDSA, we have that

0, — 0*, H, — V3f(#*) a.s. asn — oo

1 =~ ~
Here Hy (i, j) and V?Jf() denote the (i, j)th entry in the Hessian estimate H, and the true

Hessian V2 (), respectively

22



Convergenc

o~

Recall the Hessian recursion, Hy, = (1 — by)H,_1 + bn(ﬁn —V,)

23



Convergence analysis

o~

Recall the Hessian recursion, Hy, = (1 — by)H,_1 + bn(ﬁn —V,)

Rewriting Hessian recursion as SA scheme

= Hn—l - bn( Hn—l - H* + \Tjn - WH(H*)) (21)

23



Convergence analysis

o~

Recall the Hessian recursion, Hy, = (1 — by)H,_1 + bn(ﬁn —V,)

Rewriting Hessian recursion as SA scheme

= Hn—l - bn( Hn—l - H* + \Tjn - WH(H*)) (21)

Theorem

(2SPSA-3-TH Quadratic case - Convergence rate) Let

by = bg/n’, where 1/2 <1t < 1 and 0 < by < 1, H* = V2f(6*)
and Ay = Hy — H*. Under noise-free setting, we have

trace[E(ALA,)] = Q(e—Qbonl‘r/l—r) (22)
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Numerical Results




Distribution for di.i =

n’

Asymmetric Bernoulli distribution

1 —(1+e€
1+e€ 1
W. . I~ W. . —
P2+ P 2ve
Uniform perturbations’
d;, = Unif[—n,7],7 > 0 (23)

1
Prashanth L. A, Shalabh Bhatnagar, Michael Fu, Steve Marcus (2016), “Adaptive system
optimization using random directions stochastic approximation,” IEEE TAC.
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Numerical Results

Quadratic loss

f(#) = 0TAH +b"o (24)
Fourth-order loss
N N
f(0) = 0TATAO + 0.1 (A0)F +0.01) (Af)] (25)
j=1 j=1

Additive Noise : [T, 1]Z, where Z ~ N(0, 0% In;1xN+1)

1
The implementation is available at https://github.com/prashla/RDSA /archive/master.zip
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Numerical Results

Normalized MSE (NMSE)
16200 — 07117 / 1160 — 07|17 (26)
Normalized loss

f(enend )/f(eo) (27)

26



Table 1: Normalized loss values for fourth-order objective (25) with
noise: simulation budget = 10,000 and standard error from 500
replications shown after +

Noise parameter o = 0.1

Improved Hessian
Regular

estimation
2SPSA 0.132 4+ 0.0267 0.104 £ 0.0355
2SPSA-3 0.0951 + 0.0031 0.0594 + 0.0014

2RDSA-Unif 0.115 £ 0.0214 0.0271 £ 0.0538

2RDSA-AsymBer | 0.0471 4+ 0.021 0.0099 4 0.0014

1
Observation 1: Schemes with improved Hessian estimation performs better than their
respective regular schemes

5 27
Observation 2: 2RDSA-TH-AsymBer is performing the best overall



Table 2: NMSE values for quadratic objective (24) with noise:
simulation budget = 10,000 and standard error from 500 replications
shown after +

Noise parameter o = 0.1

Improved Hessian
Regular

estimation
2SPSA 0.9491 4+ 0.0131 0.5495 + 0.0217
2SPSA-3 0.8378 +0.0179 0.1045 + 0.0005

2RDSA-Unif 1.0073 £0.0140 | 0.1953 £ 0.0095

2RDSA-AsymBer | 0.1667 £0.0095 | 0.0324 4 0.0007

1
Observation 1: Schemes with improved Hessian estimation performs better than their
respective regular schemes

5 28
Observation 2: 2RDSA-TH-AsymBer is performing the best overall



Conclusions

o Proposed generalised RDSA algorithm + Improved Hessian

estimation scheme

e Improved Hessian estimation scheme for 2SPSA-3
algorithm

o 2RDSA-TH, 2SPSA-3 requires only 75% of the simulation
cost per-iteration for 2SPSA, 2SPSA-IH

29



Future work

o To improve rate of convergence of first-order methods by
incorporating ideas of momentum descent, Hessian-free

methods, and conjugate methods

e To develop stochastic approximation versions of
quasi-Newton schemes given by the Broyden family

o To explore applications of these methods to the design of

reinforcement learning algorithms

e Deterministic perturbations for Second-order methods

30



Thank You
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