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Simulation Optimization

Random Directions Stochastic Approximation (RDSA) +
Improved Hessian Estimation

Improved Hessian Estimation for Simultaneous Perturbation
Stochastic Approximation with 3 Simulations (SPSA-3)

Numerical Results
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Simulation Optimization



Optimization under Uncertainity

Energy Demand Management

• Consumer demand, energy
generation are uncertain

• Objective is to minimize
absolute difference

Traffic Signal Control

• Optimal order to switch
traffic lights

• Objective is to minimize
waiting time
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Basic optimization problem

To find θ∗ that minimizes the objective function f(θ) :

θ∗ = arg min
θ∈Θ

f(θ) (1)

• f : RN → R is called the objective function

• θ is tunable N-dimensional parameter

• Θ ⊆ RN is the feasible region in which θ takes values
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Classification of optimization problems

Deterministic optimization
problem

• Complete information about
objective function f

• First and higher order
derivatives

• Feasible region

Stochastic optimization problem

• We have little knowledge on
the structure of f

• f cannot be obtained directly

• f(θ) ≡ Eξ[h(θ, ξ )] , where
ξ comprises the randomness
in the system

Difficult to find θ∗ only on the
basis of noisy samples
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Stochastic optimization via simulation

Stochastic optimization deals with highly nonlinear and high
dimensional systems. The challenges with these problems are:

• Too complex to solve analytically

• Many simplifying assumptions are required

A good alternative of modelling and analysis is “Simulation”

θn Simulator f(θn) + ξn

Zero mean

Figure 1: Simulation optimization
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Stochastic approximation + Gradient descent

Stochastic analog of gradient descent

θn+1 = ΓΘ
[
θn − an∇̂f(θn)

]
(2)

• ∇̂f(θn) is a noisy estimate of the gradient ∇f(θn), and it should

satisfy E
[
∇̂f(θn)

]
−∇f(θn) → 0

• {an} are pre-determined step-sizes satisfying:
∞∑

n=1
an = ∞,

∞∑
n=1

a2
n < ∞

• ΓΘ denotes the projection of a point onto Θ
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2-slide summary

Related second-order methods

(Spall 2000)1 Second-order SPSA 4 simulations/iteration(2SPSA)

(Spall 2009)2 2SPSA + feedback 4 simulations/iteration

(Prashanth L.A. Second-order RDSA 3 simulations/iterationet al 2016)3 (2RDSA)

(S. Bhatnagar Second-order SPSA-3 3 simulations/iterationet al 2015)4 (2SPSA-3)
1

J. C. Spall (2000), “Adaptive stochastic approximation by the simultaneous perturbation
method,” IEEE TAC.
2

J. C. Spall (2009), “Feedback and weighting mechanisms for improving Jacobian estimates in
the adaptive simultaneous perturbation algorithm,” IEEE TAC.
3

Prashanth L. A, Shalabh Bhatnagar, Michael Fu, Steve Marcus (2016), “Adaptive system
optimization using random directions stochastic approximation,” IEEE TAC.
4

S. Bhatnagar, Prashanth L. A (2015) ,“Simultaneous perturbation Newton algorithms for
simulation optimization,” JOTA.
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2-slide summary

Our work

• We propose generalised RDSA algorithm1 + feedback and
weighting mechanisms for improving Hessian estimate2

• We propose feedback and weighting mechanisms for improving
Hessian estimate of 2SPSA-3 algorithm1

1
Under preparation - “https://github.com/dsai1215/asgoodasitgets/tree/master/Journal”.

2
D. Sai Koti Reddy, Prashanth L.A, Shalabh Bhatnagar (2016), “Improved Hessian estimation

for adaptive random directions stochastic approximation,” IEEE CDC 2016.
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Random Directions Stochastic
Approximation (RDSA) + Improved
Hessian Estimation



Our algorithm

• Matrix projection

• Gradient estimate

θn+1 = θn − an Υ (Hn)
−1 ∇̂f(θn) (3)

Hn = (1 − bn )Hn−1 + bn ( Ĥn − Ψ̂n ) (4)

• Optimal step-sizes

• Hessian estimate

• Feedback term

10



Our algorithm

• Matrix projection

• Gradient estimate

θn+1 = θn − an Υ (Hn)
−1 ∇̂f(θn) (3)

Hn = (1 − bn )Hn−1 + bn ( Ĥn − Ψ̂n ) (4)
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Overall flow of 2RDSA-IH

θn
Using parameters
θn, θn ± δndn

Simulation

Estimate ∇f(θn)

Gradient estimation

Estimate ∇2f(θn)

Hessian Estimation

Feedback
Ψ̂n

Improved Hessian estimate

Update θn

Gradient descent

θn+1
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RDSA gradient estimate

Function measurements
y+

n = f( θn + δndn ) + ξ+n , y−
n = f( θn − δndn ) + ξ−n

Gradient estimate

∇̂f(θn) =
1
λ

dn

[
y+

n − y−
n

2δn

]
(5)

Where dn = (d1
n, . . . , dN

n )
T, and λ = E(di

n)
2
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2RDSA Hessian estimate

Function measurements
y+

n = f( θn + δndn ) + ξ+n , y−
n = f( θn − δndn ) + ξ−n , yn = f( θn ) + ξn

Hessian estimate Ĥn

Ĥn = Mn

(
y+

n + y−
n − 2yn
δ2

n

)
= Mn

[(
f(θn + δndn) + f(θn − δndn)− 2f(θn)

δ2
n

)
+

(
ξ+n + ξ−n − 2ξn

δ2
n

)]
= Mn

(
dT

n∇2f(θn)dn + O(δ2
n) +

(
ξ+n + ξ−n − 2ξn

δ2
n

) )
(6)

Want to recover
∇2f(θn) from this Zero-mean
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How to choose Mn?

Mn =



1
κ

(
(d1

n)
2− λ

)
· · · 1

2λ2 d1
ndN

n
1

2λ2 d2
nd1

n · · · 1
2λ2 d2

ndN
n

· · · · · · · · ·
1

2λ2 dN
n d1

n · · · 1
κ

(
(dN

n )
2 − λ

)

 (7)

where λ = E(di
n)

2 , τ = E(di
n)

4, and κ =
(
τ − λ2) for any

i = 1, . . . ,N
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Zero-mean feedback term

Zero-mean term

Mean of the Hessian estimate

E
[

Ĥn

∣∣∣Fn

]
=∇2f(θn) + E

[
Ψn(∇2f(θn))

∣∣Fn
]
+ O(δ2

n)

+ E
[(

ξ+n + ξ−n − 2ξn
δ2

n

)∣∣∣∣Fn

]
(8)

Zero-mean

Feedback term

Ψn(H) = [Mn]D (dT
n [H]N dn) + [Mn]N (dT

n [H]D dn) (9)

1
For any matrix P, [P]D refers to a matrix that retains only the diagonal entries of P and

replaces all the remaining entries with zero
2
[P]N to refer to a matrix that retains only the off-diagonal entries of P, while replaces all the

diagonal entries with zero
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Zero-mean feedback term

Problem
Feedback term is function of current Hessian ∇2f

Solution
Use Hn−1 as a proxy for ∇2f

Ψ̂n = Ψn( Hn−1 ) (10)
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Step-size optimization

Recall the Hessian recursion, Hn = (1 − bn)Hn−1 + bn(Ĥn − Ψ̂n)

Rewriting the Hessian recursion

Hn =
n∑

i=0
b̃i(Ĥi − Ψ̂i) (11)

Optimization problem for weights

min
{b̃i}

n∑
i=0

(b̃i)
2δ−4

i , subject to (12)

b̃i ≥ 0 ∀i and
n∑

i=0
b̃i = 1 (13)
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Step-size optimization

Above optimization problem solution

b̃∗
i = δ4

i /

n∑
j=0

δ4
j , i = 1, . . . , n (14)

Optimal weights for original Hessian recursion

bi = δ4
i /

i∑
j=0

δ4
j (15)

1Step-size optimization is a relatively straightforward migration from Spall
2009
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Improved Hessian Estimation for
Simultaneous Perturbation Stochastic
Approximation with 3 Simulations
(SPSA-3)



SPSA gradient estimate1

Function measurements
y+

n = f( θn + δn∆n ) + ξ+n , y−
n = f( θn − δn∆n ) + ξ−n

Gradient estimate

∇̂f(θn) =


f(θn + δn∆n)− f(θn − δn∆n)

2δn∆n1
+

ξ+n − ξ−n
2δn∆n1...

f(θn + δn∆n)− f(θn − δn∆n)

2δn∆nN
+

ξ+n − ξ−n
2δn∆nN

 (16)

1
J. C. Spall (1992), “Multivariate stochastic approximation using a simultaneous perturbation

gradient approximation,” IEEE TAC.
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SPSA-3 Hessian estimate1

Function measurements

y++
n = f( θn + δn∆n + δn∆̂n ) + ξ++

n , yn = f( θn ) + ξn,

y−−
n = f( θn − δn∆n − δn∆̂n ) + ξ−−

n

Hessian estimate Ĥn

(
Ĥn

)
ij
=

(
y++

n + y−−
n − 2yn

2δ2
n∆

(i)
n ∆̂

(j)
n

)
(17)

1
S. Bhatnagar, Prashanth L. A (2015) ,“Simultaneous perturbation Newton algorithms for

simulation optimization,” JOTA.
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Zero-mean feedback term

Simplified Hessian estimate

Ĥn =∇2f(θn) + Ψn(∇2f(θn)) + O(δ2
n) + O(δ−2

n ) (18)

Feedback term

Ψn(H) =
1
2Pn

[
∆T

nH∆n + ∆̂T
nH∆̂n

]
+ N̂T

nHNn + N̂T
nH + HNn (19)

Where,
Pn = [1./∆n][1./∆n]

T, Nn = ∆n[1./∆n]
T − IN, N̂n = ∆̂n[1./∆̂n]

T − IN
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Convergence analysis

Lemma
(Bias in Hessian estimate) Under assumptions similar to those for
2SPSA and 2RDSA, we have a.s. that1, for i, j = 1, . . . ,N,∣∣∣E [ Ĥn(i, j)

∣∣∣Fn

]
−∇2

ijf(θn)
∣∣∣ = O(δ2

n) (20)

Theorem
(Strong Convergence of Hessian) Under assumptions similar to those
for 2SPSA and 2RDSA, we have that

θn → θ∗,Hn → ∇2f(θ∗) a.s. as n → ∞

1
Here Ĥn(i, j) and ∇2

ijf(·) denote the (i, j)th entry in the Hessian estimate Ĥn and the true
Hessian ∇2f(·), respectively
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Convergence analysis

Recall the Hessian recursion, Hn = (1 − bn)Hn−1 + bn(Ĥn − Ψ̂n)

Rewriting Hessian recursion as SA scheme

Hn = Hn−1 − bn(Hn−1 − Ĥn + Ψ̂n)

= Hn−1 − bn( Hn−1 − H∗ + Ψ̂n −Ψn(H∗)) (21)

Theorem
(2SPSA-3-IH Quadratic case - Convergence rate) Let
bn = b0/nr, where 1/2 < r < 1 and 0 < b0 ≤ 1, H∗ = ∇2f(θ∗)
and Λk = Hk − H∗. Under noise-free setting, we have

trace[E(ΛT
nΛn)] = O(e−2b0n1−r/1−r) (22)
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Numerical Results



Distribution for di
n, i = 1, . . . ,N

Asymmetric Bernoulli distribution1

-1 1 + ϵ

w.p. 1 + ϵ

(2 + ϵ)
w.p. 1

(2 + ϵ)

Uniform perturbations1

di
n = Unif[−η, η], η > 0 (23)

1
Prashanth L. A, Shalabh Bhatnagar, Michael Fu, Steve Marcus (2016), “Adaptive system

optimization using random directions stochastic approximation,” IEEE TAC.
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Numerical Results

Quadratic loss

f(θ) = θTAθ + bTθ (24)

Fourth-order loss

f(θ) = θTATAθ + 0.1
N∑

j=1
(Aθ)3

j + 0.01
N∑

j=1
(Aθ)4

j (25)

Additive Noise : [θT, 1]Z, where Z ≈ N (0, σ2IN+1×N+1)

1
The implementation is available at https://github.com/prashla/RDSA/archive/master.zip
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Numerical Results

Normalized MSE (NMSE)

∥θnend − θ∗∥2
/ ∥θ0 − θ∗∥2 (26)

Normalized loss

f(θnend)/f(θ0) (27)
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Table 1: Normalized loss values for fourth-order objective (25) with
noise: simulation budget = 10,000 and standard error from 500
replications shown after ±

Noise parameter σ = 0.1

Regular Improved Hessian
estimation

2SPSA 0.132 ± 0.0267 0.104 ± 0.0355

2SPSA-3 0.0951 ± 0.0031 0.0594 ± 0.0014

2RDSA-Unif 0.115 ± 0.0214 0.0271 ± 0.0538

2RDSA-AsymBer 0.0471 ± 0.021 0.0099 ± 0.0014
1

Observation 1: Schemes with improved Hessian estimation performs better than their
respective regular schemes
2

Observation 2: 2RDSA-IH-AsymBer is performing the best overall
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Table 2: NMSE values for quadratic objective (24) with noise:
simulation budget = 10,000 and standard error from 500 replications
shown after ±

Noise parameter σ = 0.1

Regular Improved Hessian
estimation

2SPSA 0.9491 ± 0.0131 0.5495 ± 0.0217

2SPSA-3 0.8378 ± 0.0179 0.1045 ± 0.0005

2RDSA-Unif 1.0073 ± 0.0140 0.1953 ± 0.0095

2RDSA-AsymBer 0.1667 ± 0.0095 0.0324 ± 0.0007
1

Observation 1: Schemes with improved Hessian estimation performs better than their
respective regular schemes
2

Observation 2: 2RDSA-IH-AsymBer is performing the best overall
28



Conclusions

• Proposed generalised RDSA algorithm + Improved Hessian
estimation scheme

• Improved Hessian estimation scheme for 2SPSA-3
algorithm

• 2RDSA-IH, 2SPSA-3 requires only 75% of the simulation
cost per-iteration for 2SPSA, 2SPSA-IH
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Future work

• To improve rate of convergence of first-order methods by
incorporating ideas of momentum descent, Hessian-free
methods, and conjugate methods

• To develop stochastic approximation versions of
quasi-Newton schemes given by the Broyden family

• To explore applications of these methods to the design of
reinforcement learning algorithms

• Deterministic perturbations for Second-order methods
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Thank You
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